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•  Initial state: muonic atom 
•  Final state: 

–  Single mono-energetic electron. 
•  Energy depends on Z of target. 

–  Recoiling nucleus (not observed). 
•  Coherent: nucleus stays intact. 

–  Neutrino-less 
•  Non-zero but negligible rate in Standard Model. 
•  Observable rate in many New Physics scenarios. 
•  Related decays: Charged Lepton Flavor Violation (CLFV): 
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Survey of New Physics Scenarios 
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Flavour Physics of Leptons and Dipole Moments, Eur.Phys.J.C57:13-182,2008 

Sensitive to mass scales up to O(10,000 TeV)! 



     µN→eN 

 µ→eγ  

     µ→eee 

Two Types of Diagrams 
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Loops  Contact terms 
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 Effective Lagrangian 
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Sensitivity to High Mass Scales 
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Loops dominate 
for κ << 1 

Contact terms 
dominate for   
κ >> 1 

κ 

Andre DeGouvea 
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MEG upgrade  

Mu2e: 5σ  
Mu2e PIP II: 5σ  

MEG goal 



Complementarity with the LHC 

•  If new physics is seen at the LHC 
–  Need CLFV measurements (Mu2e and others) to 

discriminate among interpretations 
•  If new physics is not seen at the LHC 

–  Mu2e has discovery reach to mass scales that are 
inaccessible to production at the LHC 
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Decay–in-Orbit: Dominant Background 
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DIO Endpoint 
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Czarnecki, Tormo, Marciano 
Phys.Rev. D84 (2011) 013006  

•  Tail of DIO falls as (EEndpoint – Ee)5 
•  Separation of ~few 100 keV for Rµe = 10-16 

Experimental effects 

Mµ Mµ 



Al nuclear radius ≈ 4 fm 

Mu2e in One Page 

•  Make muonic Al. 
•  Watch it decay: 

–  Decay-in-orbit (DIO): 40% 
•  Continuous Ee spectrum. 

–  Muon capture on nucleus: 60% 
•  Nuclear breakup: p, n, γ 

–  Neutrino-less µ to e conversion 
•  Mono-energetic Ee ≈ 105 MeV 
•  At endpoint of continuous spectrum. 

•  Measure Ee spectrum. 
•  Is there an excess at the endpoint? 
•  Quantitatively understand backgrounds 
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Bohr radius ≈ 20 fm 

Lifetime: 864 ns 



What do We Measure? 

•  Numerator: 
–  Do we see an excess at the Ee end point? 

•  Denominator: 
–  All nuclear captures of muonic Al atoms 

•  Design sensitivity for a 3 year run 
–   ≈ 2.5 ×10-17 single event sensitivity. 
–  < 6 ×10-17 limit at 90% C.L.  

•  10,000 × better than current limit (SINDRUM II). 
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Proton Delivery 
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•  Reuse Tevatron-era infrastructure 
•  Worked with Muon g-2 to develop 

a design that works well for both. 
–  Only one can run at one time. 

•  Either experiment can run 
simultaneously with NOvA. 



Superconducting Solenoid System 
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Production 
Solenoid (PS) 

Transport Solenoid (TS) 

Detector Solenoid (DS) 

4.6 T 
2.5 T 

2.0 T 

Detector Region: 
Uniform Field 1T 

1.0 T 

Graded B for most of length 

Proton Beam 



Backward Travelling Muon Beam 
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Proton Beam Production Target 

PS: Magnetic mirror 
4.6 T 

2.5 T 

Collimators 

TS: negative gradient and  
charge selection at central collimator 

To dump 

To stopping target 
and detector 

2.5 T 

2.0 T 



Stopping Target and Detectors 
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Straw Tracker 
Foil Stopping Targets 

BaF2 Calorimeter 

Incoming muon beam: <Kinetic Energy>  = 7.6 MeV 



Stopping Target 
•  Pulse of low energy µ- on thin Al foils 
•  ~50% range out and capture to form muonic Al 
•  ~0.0016 stopped µ- per proton on production target. 
•  DIO and conversion electrons pop out of target foils. 
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•  17 target foils 
•  200 microns thick 
•  5 cm spacing 
•  Radius: 

–  ≈10. cm at upstream 
–  ≈6.5 cm at downstream 

µ 

µ 

µ µ 

µ 
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•  µ are accompanied by e-, e+, π, anti-protons … 
•  These create prompt backgrounds 
•   Wait for them to decay. 

•  Extinction = (# protons between bunches)/(protons per bunch) 
•  Require: Extinction < 10-10 

Selection Window, defined at  
center plane of the tracker 
 

Proton pulse arrival at production target 

Shapes are schematic, for clarity 



Tracker: Straw Tubes in Vacuum 
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Panel: 2 Layers, 48 straws each 
Plane: 6 panels; self supporting 

Tracker sits in Vacuum 

1 

2 

Straws: 5 mm OD; 15 micron metalized mylar wall. 

3 

Custom ASIC for time division: σ ≈ 5 mm at straw center 



Tracker: Straw Tubes in Vacuum 
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4 

5 

Station: 2 planes; relative rotation under study 

Tracker: 22 stations (# and rotations still being optimized) 



How do you measure 2.5×10-17 ? 
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No hits in detector 

Reconstructable tracks 

Some hits in detector. 
Tracks not reconstructable. Beam’s-eye view of Tracker 



Signal Sensitivity for 3 Year Run 
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Reconstructed e- Momentum 

Stopped µ: 5. 8 × 1017 
 

For R = 10-16 
 

Nµe     = 3.94 ±  0.03 
NDIO   = 0.19 ± 0.01 
NOther = 0.19 
 
SES = (2.5 ± 0.1) × 10-17 

  
Errors are stat only 



Calorimeter 
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•  Two disk geometry 
•  Hex BaF2 crystals; APD or SiPM readout 
•  Provides precise timing, PID, background 

rejection, alternate track seed and 
possible calibration trigger. 



Backgrounds  
•  Stopped Muon induced 

–  Muon decay in orbit (DIO) 

•  Out of time protons or long transit-time secondaries 
–  Radiative pion capture; Muon decay in flight 
–  Pion decay in flight; Beam electrons 
–  Anti-protons 

•  Secondaries from cosmic rays 
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•  Mitigation: 
–  Excellent momentum resolution 
–  Excellent extinction plus delayed measurement window 
–  Thin window at center of TS absorbs anti-protons 
–  Shielding and veto 

 



Backgrounds for 3 Year Run 

Source Events Comment 
µ decay in orbit (DIO)  0.20 ± 0.06 
Anti-proton capture 0.10 ± 0.06 

Radiative π- capture* 0.04 ± 0.02 From protons during detection time 

Beam electrons* 0.001 ± 0.001 

µ decay in flight* 0.010 ± 0.005 With e- scatter in target 

Cosmic ray induced 0.050 ± 0.013 Assumes 10-4 veto inefficiency 
Total 0.4 ± 0.1 
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•  * scales with extinction: values in table assume extinction = 10-10 

All values preliminary;  some are stat error only. 



Mu2e Schedule 
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Solenoid 
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Installation
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Superconductor

Engineering 
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Site work/Detector Hall 
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2013            2014          2015             2016            2017            2018            2019             2020

Accelerator and Beamline 

Detector Construction

Common Projects g-2 Commissioning/
Running

mu2e Commissioning/
Running

Calendar Year 

Critical path: Solenoids 

Today Assemble and commission the detector:     
great  time for students and postdocs 



FNAL Accelerator Complex 

•  Proton Improvement Plan (PIP) 
–  Improve beam power to meet NOvA requirements 
–  Essentially complete. 

•  PIP-II design underway 

–  Project-X reimagined to match funding constraints 
–  1+ MW to LBNE at startup (2025)  
–  Flexible design to allow future realization of the full potential of the 

FNAL accelerator complex 
•  ~2 MW to LBNE 
•  10× the protons to Mu2e 
•  MW-class, high duty factor beams for rare process experiments  
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Mu2e is a Program 
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•  If we have a signal: 
–  Study Z dependence: distinguish among theories 
–  Options limited now that the programmable time structure of the 

proposed Project X beam is no longer anticipated.  

–  If we have no signal: 
–  Up to to 10 × Mu2e physics reach, Rµe < a few × 10-18  . 
–  Can use the same detector 

•  Both can be done with existing accelerator complex.  
Both would could be done faster with more protons from 
PIP II 
 



Summary and Conclusions 
•  Discover µ to e conversion or set limit 

–  Rµe < 6 × 10-17  @ 90% CL. 
–  10,000 × better than previous best limit. 
–  Mass scales to O(10,000 TeV) are within reach. 

•  Schedule: 
–  Final review ~May 2014; expect approval ~July 2014 
–  Construction start fall 2014 
–  Installation and commissioning in 2019 
–  Critical path is the solenoid system 

•  Mu2e is a program: 
–  If a signal: can study N(A,Z) dependence to elucidate the 

underlying physics. 
–  If no signal: improve sensitivity up to 10 × 
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For Further Information 

•  Mu2e: 
–  Home page: http://mu2e.fnal.gov 
–  CDR:    http://arxiv.org/abs/1211.7019 
–  DocDB: http://mu2e-docdb.fnal.gov/cgi-bin/DocumentDatabase 

•  PIP-II 
–  Steve Holmes’ talk to P5 at BNL, Dec 16, 2013 

https://indico.bnl.gov/getFile.py/access?
contribId=11&sessionId=5&resId=0&materialId=slides&confId=680 

–  Conceptual Plan:
http://projectx-docdb.fnal.gov/cgi-bin/ShowDocument?docid=1232 
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Backup Slides 
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Not Covered in This Talk 

•  Pipelined, deadtime-less trigger system 
•  Cosmic ray veto system 
•  Stopping target monitor 

–  Ge detector, behind muon beam dump 
•  Details of proton delivery 
•  AC dipole in transfer line; increase extinction 
•  In-line extinction measurement devices 
•  Extinction monitor near proton beam dump 
•  Muon beam dump 
•  Singles rates and radiation damage due to neutrons from production 

target, collimators and stopping target. 
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Fermilab Muon Program 

•  Mu2e 
•  Muon g-2 
•  Muon Accelerator Program (MAP): 

–  MuCool – ionization cooling demonstration  
–  Other R&D towards a muon collider 

•  NuStorm 
–  Proposal has Stage I approval from FNAL PAC 

•  Preliminary studies for Project-X era: 
–  µ+è e+ γ 
–  µ+è e+ e- e+  
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All envisage x10 or better over previous best experiments 



Schematic of One Cycle of the  
Muon Beamline 
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•  No real overlap between selection window and the second proton pulse! 
•  Proton times: when protons arrive at production target 
•  Selection window: measured tracks pass the mid-plane of the tracker 
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Previous Best Experiment 

•  SINDRUM II 
•  Rµe < 6.1×10-13 

@90% CL 
•  2 events in signal 

region 
•  Au target: different 

Ee endpoint than 
Al. 
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W. Bertl et al, Eur. Phys. J. C 47, 337-346 (2006)  
HEP 2001 W. Bertl – SINDRUM II Collab  



SINDRUM II Ti Result 
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SINDRUM-II 

Rµe(Ti) < 6.1X10-13 

PANIC 96 (C96-05-22) 
 
Rµe(Ti) < 4.3X10-12 

Phys.Lett. B317 (1993) 
 

Rµe(Au) < 7X10-13 

Eur.Phys.J. C47 (2006)  

•  Dominant background: beam π- 
•  Radiative Pion Capture (RPC) 
•  suppressed with prompt veto 
•  Cosmic ray backgrounds also 

important 



Why Better than SINDRUM II? 

•  FNAL can deliver ≈1000 × proton intensity. 
•  Higher µ collection efficiency. 
•  SINDRUM II was BG limited. 

–  Radiative π capture. 
–  Bunched beam and excellent extinction reduce this. 
–  So Mu2e can use the higher proton rate. 
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Muon Momentum 
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Muon Momentum at First Target 

                    <p> ≈ 40 MeV 
<Kinetic Energy> ≈7.6 MeV 



Capture and DIO vs Z 
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Al 



Conversion Rate, Normalized to Al 
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CLFV Rates in the Standard Model 

•  With massive neutrinos, non-zero rate in SM.   
•  Too small to observe. 
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Proton Beam Macro Structure 
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Proton Beam Micro Structure 
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Slow spill: 
Bunch of 4 ×107 

protons every 1694 ns 



Required Extinction 10-10  

•  Internal: 10-7 already demonstrated at AGS. 
–  Without using all of the tricks. 

•  External: in transfer-line between ring and production target.  
–  AC dipole magnets and collimators. 

•  Simulations predict aggregate 10-12 is achievable 
•  Extinction monitoring systems have been designed. 
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Project X 

•  Accelerator Reference Design: physics.acc-ph:1306.5022 
•  Physics Opportunities: hep-ex:1306.5009 
•  Broader Impacts: physics.acc-ph:1306.5024 
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•  If we have a signal: 
–  Study Z dependence: distinguish among theories 
–  Enabled by the programmable time structure of the Project X 

beam: match pulse spacing to lifetime of the muonic atom! 

•  If we have no signal: 
–  Up to to 100 × Mu2e physics reach, Rµe < 10-18  . 
–  First factor of ≈10 can use the same detector. 


